
Waris Damkham

DVWA Lab

1. Vulnerability: Brute Force (Low)

Method: Guess common password by type
Answer: Username: admin Password: password

Username: Admin Password: password

2. Vulnerability: Brute Force (Medium)

Method 1 : "Use the Intruder in Burp Suite to conduct an attack with wordlist
passwords.

Waris Damkham

Method 2: Use the Hydra tool to perform a brute force attack and obtain 16 possible
passwords. Copy these into a text file, and then use the Intruder in Burp Suite to
identify the correct one.

Waris Damkham

3. Vulnerability: Command Injection (Low)

Method: In this code, there isn't a blacklist for ';', '&&', or '|', allowing the user to
continue the command. That's why I can type '127.0.0.1; echo '---'; cd ../.. ; echo '---'; ls ;
echo '---'; cat security.txt', as shown in the picture.

4. Vulnerability: Command Injection (Medium)

Method: This code includes a blacklist for '&&' and ';', preventing the user from
continuing the command. However, we can still add '|', which allows running a second
command following the first one. Additionally, we can use '>', '<', '#', and
'$(<command>)'. In this instance, the command used in the picture is '127.0.0.1 | env'.
The 'env' command is used to run a program in a modified environment, or, when used
without arguments, it displays the current environment variables and their values.

Waris Damkham

5. Vulnerability: Command Injection (High)

Method:

This code incorporates a blacklist, as shown in the image below, which is
intended to prevent the user from continuing the command. However,
upon examining the blacklist, a vulnerability is identified with the
inclusion of '| '. This allows for the execution of additional commands.
For instance, '127.0.0.1|pwd' could be used as an example to exploit this
vulnerability. In the image above, the command '127.0.0.1|cat
/etc/passwd' is used to demonstrate how one can view a list of user
account information, despite the blacklist.

6. Vulnerability: Cross Site Request Forgery (Low)

The original credentials is Username: admin Password: password

Method: When we changed the password the URL is show like this

That we can see the vulnerable that we can input the
“?password_new=Hi&password_conf=Hi&Change=Change#”
to change the password without input and change in UI.

Waris Damkham

And I can use basic social engineering to send the HTML file that have the change
password link that the victim click it change there password that I already set the
password.

This is simple HTML file that send to the victim to click and change there password.

The password have been change to KPMG

Waris Damkham

7. Vulnerability: Cross Site Request Forgery (Medium)

As we can see that we cannot use the method as same as the low level

Method: I used burp suit to intercept when change the password in UI page. That we
can see that “HTTP_REFERER” is the
“http://127.0.0.1:4280/vulnerabilities/csrf/?password_new=1&password_conf=1&Chan
ge=Change” that contain the old password.

First, i create the malicious HTML file that on_load the URL that change the password
link like in the above picture.

Second, that i file the way to upload HTML file to the
server. I found that I can upload in file upload section
wit low level security.

Next, after uploaded the file it will
give the URL path that we can go
there to load my malicious file.

Finally, after finished upload change the security level back to Medium level and load
the URL to “hackable/uploads/CSRF_js.html” after this the password have been
changed.
We can send the full URL that file that I upload malicious file to victim after theme click
that link I will on load script and change there password.

Waris Damkham

8. Vulnerability: File inclusion (Low)

Method: First, I input
“127.0.0.1:4280/vulnerabilities/fi/?page=../../hackable/flags/fi.php” but the output is
not five Quotes that except in objective after I view the code in inspect that have some
code in comment that why i used the filter in PHP to covert to base64 to read the full
code.

9. Vulnerability: File inclusion (Medium)

Method: Same as method File inclusion Low level security but I change the payload a
little bit because the server code is block "../", "..\\" that I need to input like this

..././ -> ../
The full URL be like:

http://127.0.0.1:4280/vulnerabilities/fi/?page=php://filter/convert.base64-
encode/resource=..././..././hackable/flags/fi.php

And the output is same base64 text and we need to decode and got the full code in
plain text.

Waris Damkham

10. Vulnerability: File Upload (Low)

Method: I create the malicious file that contain command “cat /etc/passwd” and then
upload into the server. And after go to the path I will get the list of user account
information.

11. Vulnerability: File Upload (Medium)

Method: I create the malicious file that contain command “env” and then upload into
the server. And after go to the path I will get the current environment variables and
their values. But before we do this I need to burp suite and change the Content-Type
before because the server can upload only images file.

Content-Type = application/x-phpt —-> image/png

Waris Damkham

12. Vulnerability: Open HTTP Redirect (Low)

Method: We can redirect to the another page by input the URL like
“127.0.0.1/vulnerabilities/open_redirect/source/low.php?redirect=https://digi.ninja”
because the code is not block any parameter in the URL.

13. Vulnerability: Open HTTP Redirect (Medium)

Method: It same as the low level,We can redirect to the another page by input the
URL like “127.0.0.1/vulnerabilities/open_redirect/source/low.php?redirect=//digi.ninja”
because the code is block only http and https in front of the parameter in the URL.

Waris Damkham

14. Vulnerability: Authorisation Bypass (Low)

Method: In the low level of the security, they didn’t have any code to prevent the
another user access the admin. Everyone can find this page if there know the URL.

15. Vulnerability: Authorisation Bypass (Medium)

Method: In the medium level of the security, they have a code to prevent the another
user access the admin. But they have the page in PHP that return the user data in PHP.
I found that by using OS Command injection to list them. Like this “127.0.0.1; cd ../.. ;
cd vulnerabilities/authbypass && ls && cat get_user_data.php”

Waris Damkham

16. Vulnerability: Weak Session IDs (Low)

The objection of this task is to analyze and understand the method of session ID
generation employed at the low-security level, specifically focusing on the current
approach which generates a mere single number for each new session.

Waris Damkham

17. Vulnerability: Weak Session IDs (Medium)

The objection of this task is to analyze and understand the method of session ID
generation employed at the mid-security level, specifically focusing on the current
approach which generates a number by the current time for each new session.

18. Vulnerability: Content Security Policy Bypass (Low)

Method: In the low level of security, they set the website that can allow run script like
pastebin that we can craft own JavaScript like “alert(document.cookie)” to alert cookie
like the picture above.

Waris Damkham

19. Vulnerability: Content Security Policy Bypass (Medium)

First, I run the Command injection to see the find the directory of CSP Medium PHP file
like this

“127.0.0.1; cd ../.. ; cd vulnerabilities/csp ; ls ; cd source ; ls”

Second, I find the encoded of the medium.php to see the source code

“http://127.0.0.1:4280/vulnerabilities/fi/?page=php://filter/convert.base64-
encode/resource=../../vulnerabilities/csp/source/medium.php”

After that we decode out the see the plain text of the source code

Method: In the medium level of security, they set the website that can allow run script
but need the nonce within script to run that we can craft own JavaScript like “<script
nonce="TmV2ZXIgZ29pbmcgdG8gZ2l2ZSB5b3UgdXA=">alert(document.cookie)</scri
pt>” to alert cookie like the picture above.

Waris Damkham

20. Vulnerability: JavaScript (Low)

After, input the “success” it said Invalid token that I use burp suite to see the request
that I found that they have token.

The token is the hash MD5 after that I found in the source code that they encode with
rot13.

Method:

First, I encode “sucess” with
rot13 that I got the word
“fhpprff”

Next, I hash the word “fhpprff” with
MD5

Finally, I use this hash and word sucess in burp suite request to sent in to DVWA
website.

Waris Damkham

21. Vulnerability: JavaScript (Medium)

After, input the “success” it said Invalid token that I use burp suite to see the request
that I found that they have token.

The token pattern is weird that I look in the source code that I found the JS file that
run the pattern. That I create the HTML file to run this JS.

It the same as in the burp suite that I change the input “ChangeMe” to “success” and
the output is “XXsseccusXX”. I use this as the token and this is the output.

Waris Damkham

22. Vulnerability: SQL Injection (Low)

Method: In low security level, I see the query code it “SELECT first_name, last_name
FROM users WHERE user_id = (input)”

First, I try input 1 = 1' or '0' = '0 this is the output like image below:

The output is the Full name of all user

The full query be like “SELECT first_name, last_name FROM users WHERE user_id = ‘1 =
1’ or ‘0’ = ‘0’;”

Next, query to see the Database version. I input 1 = 1' or '0' = 0 union select null,
version() #

The output is the Full version of the Database (MariaDB)

The full query be like “SELECT first_name, last_name FROM users WHERE user_id = ‘1 =
1' or '0' = 0 union select null, version() #”

Waris Damkham

Next, query to see the table name. I input 1 = 1' UNION SELECT table_name, NULL
FROM information_schema.tables #

The output is the name of the users table name

The full query be like “SELECT first_name, last_name FROM users WHERE user_id = 1 =
1' UNION SELECT table_name, NULL FROM information_schema.tables #”

Next, query to see the columns in users table name .I input 1 = 1' UNION SELECT
column_name, NULL FROM information_schema.columns WHERE table_name= 'users'
#

The output is the name of the columns in users table name

The full query be like “SELECT first_name, last_name FROM users WHERE user_id = 1 =
1' UNION SELECT column_name, NULL FROM information_schema.columns WHERE
table_name= 'users' #”

Next, query out the username and password, I input 1= 1’ UNION SELECT user,
password FROM users #

Waris Damkham

The output is the User and Password in users table name

The full query be like “SELECT first_name, last_name FROM users WHERE user_id = 1=
1’ UNION SELECT user, password FROM users #

23. Vulnerability: SQL Injection (Medium)

Method: In medium security level, I cannot see the input box that I can input the query.
First, I use burp suite to intercept the request. Next, I try to input 1= 1’ UNION SELECT
user, password FROM users #

Waris Damkham
In seem cannot input special character. Now, try input the same payload with special character
1= 1 UNION SELECT user, password FROM users #

24. Vulnerability: XSS (DOM) (Low)

Method: From the image above we can that in the low level security don’t have ant
prevent that I use <script> to alert out the cookie in URL.

Waris Damkham

25. Vulnerability: XSS (DOM) (Medium)

Method: In the medium level, they block the script tag and if we input <script> it will
redirect to the user to the location ?default=English. But we can bypass this by using
<select> we can see that the have open <select> already. After </select> tag we can
start new HTML tag. So, our bypass XSS payload

Waris Damkham

26. Vulnerability: XSS (Reflected) (Low)

Method: In the low level, they don’t have any prevent the script tag. We can do two
way. First, I use span tag to create text Hover over me! and alert to cookie when hover
the text like the image above.

Second, We can use simple script tag to alert cookie.

Waris Damkham

27. Vulnerability: XSS (Reflected) (Medium)

Method: In the medium level, they add only simple pattern match to remove
references to "<script>". But we can you other way like

First, I use span tag to create text Hover over me! and alert to cookie when hover the
text like the image above.

Second, We can use the case sensitive because the code is only simple pattern match. I
use payload like this <Script>

Waris Damkham

28. Vulnerability: XSS (Stored) (Low)

Method: In the low level, they don’t have any prevent the script tag. We can do two
way. First, I use span tag to create text Hover over me! and alert to cookie when hover
the text like the image above.

Second, We can use simple script tag to alert cookie.

29. Vulnerability: XSS (Stored) (Medium)

Method: In the medium level, they have prevent the script tag. In the code message
file, they have input sanitization . This code contains two php functions for performing
input sanitization. First one is strip_tags(). It removes all html tags from the message
field before storing them in database. Second function is htmlspecialchars(). It converts
all the bad characters like &, ", ', > and < in their equivalent HTML character.

In this code below, is for performing input sanitization on Name field. It uses just one
function for performing input sanitization. The function is str_replace(). Here this
function is replacing all the occurrences of <script> tag with null or blank character.

Waris Damkham

Now create the payload. First, I use span tag to create text Hover over me! and alert to
cookie when hover the text like the image above. But we need change the maxlength
in insect element from 10 to 100 character that we can input more length.

Waris Damkham

30. Vulnerability: SQL Injection(Blind) (Low)

Method: In the low level, they have the input box that we can type the query to check
that they have vulnerable or not? The query is check that user ID is exist or not

Now, Input “10' or 0 = 0 #” the ID 10 is should be missing but the system show exists.
This mean vulnerable.

Then, I use sqlmap to dump the version of the database out with this command
“sqlmap -u "http://127.0.0.1:4280/vulnerabilities/sqli_blind/?id=10&Submit=Submit" --
cookie="PHPSESSID=5516b1fc73fd337becf10f76ad839cec; security=low" --flush-
session -p id --banner”

Waris Damkham

31. Vulnerability: SQL Injection(Blind) (Medium)

Method: In the medium level, they have the drop down that we can select the number
of user id to check is exist or not? But in this one we cannot input query directly, I use
burp suite to intercept the request to add or query to see the vulnerable.

We can see that the user id 10 is should be missing not exists

Then I save the request into text file for using in sqlmap but I change to request to use
only id=10 like image below.

Then, I use sqlmap to dump the version of the database out with this command
“sqlmap -r re.txt -p id -flush-session --banner”

Waris Damkham

32. Vulnerability: Insecure CAPTCHA (Low)

Method: In the low level, we bypass the CAPTCHA by using the step skip. First, I input it
normally and pass the CAPTCHA. (Password: 12345)

Next, I used burp suite every step to see the request. On this page they need us to click
change button to confirm change.

Then, we will see the request in burp suite. That I sent it into repeater and now, I can
change password on this one that skip all the step and CAPTCHA.

Waris Damkham

33. Vulnerability: Insecure CAPTCHA (Medium)

Method: In the medium level, I same step as low level. But the different things is at the
request step 2 they have the parameter passed_captcha=true. Now we can bypass all the
step and CAPTCHA.

